In this paper, we consider a fully-discrete approximation of an abstract evolution equation deploying a non-conforming spatial approximation and finite differences in time (Rothe-Galerkin method). The main result is the convergence of the discrete solutions to a weak solution of the continuous problem. Therefore, the result can be interpreted either as a justification of the numerical method or as an alternative way of constructing weak solutions. We formulate the problem in the very general and abstract setting of so-called non-conforming Bochner pseudo-monotone operators, which allows for a unified treatment of several evolution problems. Our abstract results for non-conforming Bochner pseudo-monotone operators allow to establish (weak) convergence just by verifying a few natural assumptions on the operators time-by-time and on the discretization spaces. Hence, applications and extensions to several other evolution problems can be performed easily. We exemplify the applicability of our approach on several DG schemes for the unsteady $p$-Navier-Stokes problem. The results of some numerical experiments are reported in the final section.
翻译:在本文中,我们考虑一个完全分解的抽象进化方程式近似,即部署一个不兼容的空间近似值和时间上的有限差异(Rothe-Galerkin方法),其主要结果是将离散的解决方案与持续问题的薄弱解决方案相融合,因此,结果可以被解释为数字方法的正当理由,也可以被解释为构建薄弱解决方案的替代方法。我们在所谓的不兼容的Bochner伪monoone操作器的非常笼统和抽象的设置中提出问题,这样就可以统一处理若干进化问题。我们关于不兼容的Bochner伪mononoone操作器的抽象结果可以建立(弱化)趋同,只需核实操作者在时间上和离散空间上的少数自然假设即可。因此,可以轻松地将应用和扩展应用于其他几个进化问题。我们举例说明我们在若干DG方案上对不稳定的美元-纳维埃-斯托克斯问题的适用性。一些数字实验的结果在最后一节中报告。