Neural networks with PDEs embedded in their loss functions (physics-informed neural networks) are employed as a function approximators to find solutions to the Ricci flow (a curvature based evolution) of Riemannian metrics. A general method is developed and applied to the real torus. The validity of the solution is verified by comparing the time evolution of scalar curvature with that found using a standard PDE solver, which decreases to a constant value of 0 on the whole manifold. We also consider certain solitonic solutions to the Ricci flow equation in two real dimensions. We create visualisations of the flow by utilising an embedding into $\mathbb{R}^3$. Snapshots of highly accurate numerical evolution of the toroidal metric over time are reported. We provide guidelines on applications of this methodology to the problem of determining Ricci flat Calabi--Yau metrics in the context of String theory, a long standing problem in complex geometry.
翻译:在损失函数(物理知情神经网络)中嵌入PDE的神经网络被用作功能近似器,以寻找里曼尼度量仪的Ricci流(以曲线为基础的进化)的解决方案。 开发了一种一般方法, 并应用于真实的横形体。 解决方案的有效性通过比较标度曲线曲线的进化时间与使用标准PDE解算器发现的时间进化过程加以验证, 标准PDE解算器在全方位上会降低到恒定值的0。 我们还考虑在两个真实的维度中为Riccci流方程式设定某些单立方体的解决方案。 我们利用嵌入 $\ mathb{R ⁇ 3$来创建流流的可视化图象化。 报告了随着时间的推移, 极性度度度度度度度量度的高度精确进化速。 我们为在字符串理论中确定 Ricci flap Calabi-Yau 度测量仪的问题提供了应用该方法的准则,这是复杂的几何中长期存在的问题。