The unit commitment (UC) problem, which determines operating schedules of generation units to meet demand, is a fundamental task in power systems operation. Existing UC methods using mixed-integer programming are not well-suited to highly stochastic systems. Approaches which more rigorously account for uncertainty could yield large reductions in operating costs by reducing spinning reserve requirements; operating power stations at higher efficiencies; and integrating greater volumes of variable renewables. A promising approach to solving the UC problem is reinforcement learning (RL), a methodology for optimal decision-making which has been used to conquer long-standing grand challenges in artificial intelligence. This thesis explores the application of RL to the UC problem and addresses challenges including robustness under uncertainty; generalisability across multiple problem instances; and scaling to larger power systems than previously studied. To tackle these issues, we develop guided tree search, a novel methodology combining model-free RL and model-based planning. The UC problem is formalised as a Markov decision process and we develop an open-source environment based on real data from Great Britain's power system to train RL agents. In problems of up to 100 generators, guided tree search is shown to be competitive with deterministic UC methods, reducing operating costs by up to 1.4\%. An advantage of RL is that the framework can be easily extended to incorporate considerations important to power systems operators such as robustness to generator failure, wind curtailment or carbon prices. When generator outages are considered, guided tree search saves over 2\% in operating costs as compared with methods using conventional $N-x$ reserve criteria.


翻译:单位承诺(UC)问题决定了发电单位的运行时间表以满足需求,这是电力系统运作的一项根本任务。使用混合整数编程的现有UC方法不适宜于高度随机化系统。更严格地说明不确定性的方法可以通过减少旋转储备需求而大幅降低运营成本;运行电站效率更高;整合更多可变可再生能源。解决UC问题的一个有希望的方法是强化学习(RL),这是最佳决策的一种方法,用来克服人工智能中长期存在的重大挑战。这个理论探讨了RL对UC问题的应用,并解决了挑战,包括稳健的不确定性;跨多个问题案例的通用性;以及扩大电力系统规模。为了解决这些问题,我们开发了有指导的树木搜索方法,将无模式的RL和基于模型的规划结合起来。UC问题被正规化为Markov决策程序,我们根据来自英国电力系统的真实数据开发了开放源环境来培训RL代理。当人们认为RL对UC问题进行了应用时,相对于稳健的UC问题,在多个问题中比较稳妥性成本,在操作成本方面,在操作成本方面,以透明操作成本方面,以稳定为核心的操作法,在操作成本框架中可以确定重要的RBIL的操作成本框架之外的操作方法,在降低成本的操作成本框架。通过重要的常规成本框架。在降低中,通过重要的操作成本的操作成本的操作成本的简化中,可以被演示,在降低成本的操作成本框架中进行到重要研究。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月12日
Arxiv
27+阅读 · 2023年2月10日
Arxiv
66+阅读 · 2022年4月13日
Arxiv
11+阅读 · 2021年12月8日
Arxiv
19+阅读 · 2021年6月15日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员