Internal learning for single-image generation is a framework, where a generator is trained to produce novel images based on a single image. Since these models are trained on a single image, they are limited in their scale and application. To overcome these issues, we propose a meta-learning approach that enables training over a collection of images, in order to model the internal statistics of the sample image more effectively. In the presented meta-learning approach, a single-image GAN model is generated given an input image, via a convolutional feedforward hypernetwork $f$. This network is trained over a dataset of images, allowing for feature sharing among different models, and for interpolation in the space of generative models. The generated single-image model contains a hierarchy of multiple generators and discriminators. It is therefore required to train the meta-learner in an adversarial manner, which requires careful design choices that we justify by a theoretical analysis. Our results show that the models obtained are as suitable as single-image GANs for many common image applications, significantly reduce the training time per image without loss in performance, and introduce novel capabilities, such as interpolation and feedforward modeling of novel images.
翻译:单图像生成的内部学习是一个框架, 一个生成器经过培训, 以单一图像为基础制作新图像。 由于这些模型是用单一图像培训的, 这些模型的规模和应用有限。 为了克服这些问题, 我们提出一个元学习方法, 使培训能够针对图像的收集进行培训, 以便更有效地模拟样本图像的内部统计。 在介绍的元学习方法中, 一个单一图像 GAN 模型生成了一个输入图像, 其方法是通过一个进化式反馈超网络 $f$。 这个网络在图像数据集上接受培训, 允许不同模型之间共享特征, 并在基因化模型空间中进行内插插。 生成的单图像模型包含多个生成器和导体的等级。 因此, 需要以对抗性的方式培训元 Letar, 这需要谨慎的设计选择, 我们通过理论分析来证明 。 我们的结果表明, 获得的模型与多个通用图像应用的单图像一样适合, 大大缩短了每个图像的培训时间, 而不会在性能中损失, 并引入创新的图像模型, 例如 内部化和进化模型 。