Practical learning-based autonomous driving models must be capable of generalizing learned behaviors from simulated to real domains, and from training data to unseen domains with unusual image properties. In this paper, we investigate transfer learning methods that achieve robustness to domain shifts by taking advantage of the invariance of spatio-temporal features across domains. In this paper, we propose a transfer learning method to improve generalization across domains via transfer of spatio-temporal features and salient data augmentation. Our model uses a CNN-LSTM network with Inception modules for image feature extraction. Our method runs in two phases: Phase 1 involves training on source domain data, while Phase 2 performs training on target domain data that has been supplemented by feature maps generated using the Phase 1 model. Our model significantly improves performance in unseen test cases for both simulation-to-simulation transfer as well as simulation-to-real transfer by up to +37.3\% in test accuracy and up to +40.8\% in steering angle prediction, compared to other SOTA methods across multiple datasets.


翻译:实践学习自主驱动模型必须能够将从模拟领域到真实领域以及从培训数据到具有不同图像特性的无形领域所学到的行为普遍化。 在本文中,我们研究利用跨领域时空特征的变异性,将实现稳健性的学习方法转移至领域转移。在本文件中,我们提议了一种转让学习方法,通过传输时空特征和突出的数据增强,改善跨领域的通用。我们的模型使用CNN-LSTM网络和感知模块来提取图像特征。我们的方法分两个阶段进行:第一阶段是源域数据培训,第二阶段是目标域数据培训,由第一阶段模型生成的特征地图加以补充。我们的模型极大地改进了模拟模拟到模拟模拟传输以及模拟到实际传输在测试精度和引导角度预测中最高为+37.3 ⁇ +40.8 ⁇,与多个数据集的其他SOTA方法相比,在模拟到模拟到实际传输方面的情况。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
5+阅读 · 2020年3月17日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员