Autonomous driving consists of a multitude of interacting modules, where each module must contend with errors from the others. Typically, the motion prediction module depends upon a robust tracking system to capture each agent's past movement. In this work, we systematically explore the importance of the tracking module for the motion prediction task and ultimately conclude that the overall motion prediction performance is highly sensitive to the tracking module's imperfections. We explicitly compare models that use tracking information to models that do not across multiple scenarios and conditions. We find that the tracking information plays an essential role and improves motion prediction performance in noise-free conditions. However, in the presence of tracking noise, it can potentially affect the overall performance if not studied thoroughly. We thus argue practitioners should be mindful of noise when developing and testing motion/tracking modules, or that they should consider tracking free alternatives.
翻译:自动驾驶由多个互动模块组成,每个模块都必须与其它模块的错误相对应。通常,运动预测模块取决于一个强大的跟踪系统,以捕捉每个代理器过去的动向。在这项工作中,我们系统地探索运动预测任务跟踪模块的重要性,最终得出结论,总体运动预测性能对于跟踪模块的缺陷非常敏感。我们明确地将使用跟踪信息的模型与不跨越多种情景和条件的模型进行比较。我们发现,跟踪信息发挥着关键作用,改善了无噪音条件下的运动预测性能。然而,在跟踪噪音的情况下,如果不彻底研究,它可能会影响总体性能。因此,我们主张从业人员在开发和测试运动/跟踪模块时,应当注意噪音,或者应当考虑跟踪免费的替代品。