Autonomous driving consists of a multitude of interacting modules, where each module must contend with errors from the others. Typically, the motion prediction module depends upon a robust tracking system to capture each agent's past movement. In this work, we systematically explore the importance of the tracking module for the motion prediction task and ultimately conclude that the overall motion prediction performance is highly sensitive to the tracking module's imperfections. We explicitly compare models that use tracking information to models that do not across multiple scenarios and conditions. We find that the tracking information plays an essential role and improves motion prediction performance in noise-free conditions. However, in the presence of tracking noise, it can potentially affect the overall performance if not studied thoroughly. We thus argue practitioners should be mindful of noise when developing and testing motion/tracking modules, or that they should consider tracking free alternatives.


翻译:自动驾驶由多个互动模块组成,每个模块都必须与其它模块的错误相对应。通常,运动预测模块取决于一个强大的跟踪系统,以捕捉每个代理器过去的动向。在这项工作中,我们系统地探索运动预测任务跟踪模块的重要性,最终得出结论,总体运动预测性能对于跟踪模块的缺陷非常敏感。我们明确地将使用跟踪信息的模型与不跨越多种情景和条件的模型进行比较。我们发现,跟踪信息发挥着关键作用,改善了无噪音条件下的运动预测性能。然而,在跟踪噪音的情况下,如果不彻底研究,它可能会影响总体性能。因此,我们主张从业人员在开发和测试运动/跟踪模块时,应当注意噪音,或者应当考虑跟踪免费的替代品。

0
下载
关闭预览

相关内容

专知会员服务
95+阅读 · 2021年8月28日
专知会员服务
52+阅读 · 2021年6月30日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
专知会员服务
53+阅读 · 2020年9月7日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
7+阅读 · 2017年12月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员