Most semantic segmentation approaches of Hyperspectral images (HSIs) use and require preprocessing steps in the form of patching to accurately classify diversified land cover in remotely sensed images. These approaches use patching to incorporate the rich neighborhood information in images and exploit the simplicity and segmentability of the most common HSI datasets. In contrast, most landmasses in the world consist of overlapping and diffused classes, making neighborhood information weaker than what is seen in common HSI datasets. To combat this issue and generalize the segmentation models to more complex and diverse HSI datasets, in this work, we propose our novel flagship model: Clustering Ensemble U-Net (CEU-Net). CEU-Net uses the ensemble method to combine spectral information extracted from convolutional neural network (CNN) training on a cluster of landscape pixels. Our CEU-Net model outperforms existing state-of-the-art HSI semantic segmentation methods and gets competitive performance with and without patching when compared to baseline models. We highlight CEU-Net's high performance across Botswana, KSC, and Salinas datasets compared to HybridSN and AeroRIT methods.
翻译:高光谱图像(HISI)使用和要求以修补形式对遥感图像中土地覆盖多样化土地覆盖进行准确分类,从而准确分类遥感图像中土地覆盖多样化的多样化土地覆盖进行预处理步骤;这些方法利用补补用,将丰富的邻区信息纳入图像中,并利用最常见的HSI数据集的简单和分化性;相比之下,世界上大多数陆地分布物由重叠和分散的类别组成,使邻区信息比共同的HSI数据集中看到的更弱;为解决这一问题,将区段模型普遍分为到更复杂和多样化的HSI数据集,我们在此工作中提议我们的新旗旗模型:将聚集成的U-Net(CEU-Net);CEEU-Net使用混合法将从同层神经网络(CNN)中提取的关于一组地貌象素的光谱信息结合起来;我们的CEU-Net模型将现有状态-艺术HSI的HSI成文分解方法比现有状态-高HSI,在与基线模型相比,我们强调CEU-Net在博茨瓦纳、KSS、Salina等的混合方法。