Semantic segmentation models struggle to generalize in the presence of domain shift. In this paper, we introduce contrastive learning for feature alignment in cross-domain adaptation. We assemble both in-domain contrastive pairs and cross-domain contrastive pairs to learn discriminative features that align across domains. Based on the resulting well-aligned feature representations we introduce a label expansion approach that is able to discover samples from hard classes during the adaptation process to further boost performance. The proposed approach consistently outperforms state-of-the-art methods for domain adaptation. It achieves 60.2% mIoU on the Cityscapes dataset when training on the synthetic GTA5 dataset together with unlabeled Cityscapes images.
翻译:在域变的情况下, 语义分割模型会争先恐后地进行概括化 。 在本文中, 我们引入了对跨域适应性特征匹配的对比性学习。 我们聚集了内部对比性对和交叉对比性对, 以学习跨域的区别性特征。 基于由此形成的非常一致的特征表征, 我们引入了标签扩展方法, 在适应过程中能够从硬类中发现样本, 以进一步提升性能 。 提议的方法在域适应性方面始终优于最先进的方法 。 当关于合成 GTA5 数据集的培训与无标签的市景图像一起进行时, 它在城景数据集上实现了60.2%的 mIoU 。