This paper introduces the $f$-sensitivity model, a new sensitivity model that characterizes the violation of unconfoundedness in causal inference. It assumes the selection bias due to unmeasured confounding is bounded "on average"; compared with the widely used point-wise sensitivity models in the literature, it is able to capture the strength of unmeasured confounding by not only its magnitude but also the chance of encountering such a magnitude. We propose a framework for sensitivity analysis under our new model based on a distributional robustness perspective. We first show that the bounds on counterfactual means under the f-sensitivity model are optimal solutions to a new class of distributionally robust optimization (DRO) programs, whose dual forms are essentially risk minimization problems. We then construct point estimators for these bounds by applying a novel debiasing technique to the output of the corresponding empirical risk minimization (ERM) problems. Our estimators are shown to converge to valid bounds on counterfactual means if any nuisance component can be estimated consistently, and to the exact bounds when the ERM step is additionally consistent. We further establish asymptotic normality and Wald-type inference for these estimators under slower-than-root-n convergence rates of the estimated nuisance components. Finally, the performance of our method is demonstrated with numerical experiments.


翻译:本文引入了美元敏感度模型, 这是一种新的敏感度模型, 其特征是违反因果关系推断中的无根据性能。 它假定,由于未测得的混乱而选择偏差是“平均”的; 与文献中广泛使用的点对点敏感度模型相比,它能够捕捉出非计量混乱的强度,不仅因为其规模,而且因为遇到如此规模的可能性。 我们基于分布稳健的视角, 提出了一个在新模型下进行敏感度分析的框架。 我们首先显示, 灵敏度模型下反事实手段的界限是新一类分配稳健优化(DRO)程序的最佳解决方案,其双重形式基本上有尽量减少问题的风险。 我们随后通过对相应的实验风险最小化(ERM)问题的结果应用一种新的减偏差技术, 从而为这些界限设定了点估计值。 我们的估算值显示, 如果能够对任何稳妥性成分进行一致估算, 并且当机构性调整步骤具有额外一致性时, 度的趋同性性率是更慢的。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月19日
Arxiv
0+阅读 · 2022年10月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员