Estimating characteristics of domains (referred to as small areas) within a population from sample surveys of the population is an important problem in survey statistics. In this paper, we consider model-based small area estimation under the nested error regression model. We discuss the construction of mixed model estimators (empirical best linear unbiased predictors, EBLUPs) of small area means and the conditional linear predictors of small area means. Under the asymptotic framework of increasing numbers of small areas and increasing numbers of units in each area, we establish asymptotic linearity results and central limit theorems for these estimators which allow us to establish asymptotic equivalences between estimators, approximate their sampling distributions, obtain simple expressions for and construct simple estimators of their asymptotic mean squared errors, and justify asymptotic prediction intervals. We present model-based simulations that show that in quite small, finite samples, our mean squared error estimator performs as well or better than the widely-used \cite{prasad1990estimation} estimator and is much simpler, so is easier to interpret. We also carry out a design-based simulation using real data on consumer expenditure on fresh milk products to explore the design-based properties of the mixed model estimators. We explain and interpret some surprising simulation results through analysis of the population and further design-based simulations. The simulations highlight important differences between the model- and design-based properties of mixed model estimators in small area estimation.
翻译:在人口抽样调查中,对一个人口群体(称为小区域)的地域特征进行估测是调查统计中的一个重要问题。在本文中,我们考虑在嵌入错误回归模型下基于模型的小面积估算;我们讨论小面积手段的混合模型估算器的构建(最佳线性公正预测器,EBLUPs)和小面积手段的有条件线性预测器。在小面积面积数量增加和每个区域单位数量增加的零时间框架下,我们为这些估算器设定了无症状线性结果和中央限值。这些估算器使我们能够在估计器、其抽样分布的近似近似、小面积的简单表达方式和小面积的简单估算器的构建,以及小面积的有条件线性预测器。我们在基于模型、小面积和小面积的测算器中,为我们基于平均正方差的测算器的测得好或好于这些广泛使用的缩略式估算器的中央限值。我们通过精确度设计、精确度的模拟数据分析,在精确度设计中,我们通过精确的模型和模拟数据分析,在精确度数据分析中,我们通过精确的模拟数据分析,对数据进行精确的计算,对数据进行最精确的计算,对数据进行进行最精确的计算。