This paper proposes an efficient and probabilistic adaptive voxel mapping method for 3D SLAM. An accurate uncertainty model of point and plane is proposed for probabilistic plane representation. We analyze the need for coarse-to-fine voxel mapping and then use a novel voxel map organized by a Hash table and octrees to build and update the map efficiently. We apply the voxel map to the iterated Kalman filter and construct the maximum posterior probability problem for pose estimation. The experiments on the open KITTI dataset show the high accuracy and efficiency of our method in contrast with other state-of-the-art. Outdoor experiments on unstructured environments with non-repetitive scanning LiDAR further verify the adaptability of our mapping method to different environments and LiDAR scanning patterns.
翻译:本文为 3D SLAM 提出了一个高效的、概率性适应性反oxel 绘图方法。 提出了一个精确的点和平面不确定性模型用于概率性平面代表。 我们分析了粗皮到松皮对oxel 绘图的必要性,然后用由Hash 表格和octrees 组织的新式的 voxel 地图来高效地构建和更新地图。 我们将 voxel 地图应用到循环的 Kalman 过滤器中, 并构建了最大后缘概率问题以进行估计。 在开放的 KITTI 数据集上进行的实验表明,我们的方法与其他最新数据相比具有很高的准确性和效率。 在无结构环境中进行的外门实验,使用非重复式扫描 LiDAR 进一步验证了我们的绘图方法对不同环境和LDAR 扫描模式的适应性。