Conventional causal estimands, such as the average treatment effect (ATE), reflect how the mean outcome in a population or subpopulation would change if all units received treatment versus control. Real-world policy changes, however, are often incremental, changing the treatment status for only a small segment of the population who are at or near "the margin of participation." To capture this notion, two parallel lines of inquiry have developed in economics and in statistics and epidemiology that define, identify, and estimate what we call interventional effects. In this article, we bridge these two strands of literature by defining interventional effect (IE) as the per capita effect of a treatment intervention on an outcome of interest, and marginal interventional effect (MIE) as its limit when the size of the intervention approaches zero. The IE and MIE can be viewed as the unconditional counterparts of the policy-relevant treatment effect (PRTE) and marginal PRTE (MPRTE) proposed in the economics literature. However, different from PRTE and MPRTE, IE and MIE are defined without reference to a latent index model, and, as we show, can be identified either under unconfoundedness or through the use of instrumental variables. For both scenarios, we show that MIEs are typically identified without the strong positivity assumption required of the ATE, highlight several "stylized interventions" that may be of particular interest in policy analysis, discuss several parametric and semiparametric estimation strategies, and illustrate the proposed methods with an empirical example.


翻译:然而,现实世界的政策变化往往是递增的,只改变了处于或接近“参与幅度”的一小部分人口的治疗状况。 为了抓住这个概念,经济学和统计以及流行病学方面出现了两条平行的调查线,界定、确定和估计我们所称的干预效应。在本条中,我们通过将干预效应(IE)定义为治疗干预干预对利益结果的人均效应和边际干预效应(MIE)作为干预规模接近零时的限度来弥补人口或亚人口群体的平均结果如何变化。 IE和MIE可被视为经济学文献中提议的与政策相关的治疗效应(PRTE)和边缘PRTE(MPRTE)的无条件对应方。然而,与PRTE和MPRTE、IE和MIE不同的是,我们定义了这两个文献,没有参考潜在指数模型模型,而且正如我们所显示的那样,在不按某种假设性假设性假设性的情况下,我们通常会以某种不成熟的假设性的方法来解释。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员