We study the dynamics of matrix-valued time series with observed network structures by proposing a matrix network autoregression model with row and column networks of the subjects. We incorporate covariate information and a low rank intercept matrix. We allow incomplete observations in the matrices and the missing mechanism can be covariate dependent. To estimate the model, a two-step estimation procedure is proposed. The first step aims to estimate the network autoregression coefficients, and the second step aims to estimate the regression parameters, which are matrices themselves. Theoretically, we first separately establish the asymptotic properties of the autoregression coefficients and the error bounds of the regression parameters. Subsequently, a bias reduction procedure is proposed to reduce the asymptotic bias and the theoretical property of the debiased estimator is studied. Lastly, we illustrate the usefulness of the proposed method through a number of numerical studies and an analysis of a Yelp data set.
翻译:我们通过提出矩阵网络自动递减模型和主题的行和纵列网络,研究矩阵估值时间序列的动态,研究观察网络结构。我们纳入了共变信息,并采用了低级拦截矩阵。我们允许在矩阵中进行不完整的观测,而缺失的机制可能取决于共变。为了估计模型,建议采用两步估算程序。第一步旨在估计网络自动递减系数,第二步旨在估计回归参数,即矩阵本身。理论上,我们首先单独确定自动递减系数和回归参数的误差界限的无药用特性。随后,我们提议了减少偏差的程序,以减少无药可治的偏差偏差的偏差和偏差的估量计的理论属性。最后,我们通过数研究和对叶尔普数据集的分析来说明拟议方法的有用性。