The asymptotic mean squared test error and sensitivity of the Random Features Regression model (RFR) have been recently studied. We build on this work and identify in closed-form the family of Activation Functions (AFs) that minimize a combination of the test error and sensitivity of the RFR under different notions of functional parsimony. We find scenarios under which the optimal AFs are linear, saturated linear functions, or expressible in terms of Hermite polynomials. Finally, we show how using optimal AFs impacts well-established properties of the RFR model, such as its double descent curve, and the dependency of its optimal regularization parameter on the observation noise level.
翻译:随机特征回归模型的最优激活函数
翻译后的摘要:
本文探讨了随机特征回归模型(RFR)的渐近均方测试误差和灵敏度。在此基础上,本文建立了一种闭合形式的激活函数(AF)族,该族在不同的功能紧凑性概念下,将测试误差和RFR的灵敏度结合起来最小化。我们发现,在某些场景下,最优的激活函数是线性、饱和线性函数或者是用Hermite多项式表达的函数。最后,我们展示了如何利用最优激活函数影响RFR模型的核心性质,例如其双峰下降曲线,以及其最优正则化参数与观测噪声水平的相关性。