We study the problem of online generalized linear regression in the stochastic setting, where the label is generated from a generalized linear model with possibly unbounded additive noise. We provide a sharp analysis of the classical follow-the-regularized-leader (FTRL) algorithm to cope with the label noise. More specifically, for $\sigma$-sub-Gaussian label noise, our analysis provides a regret upper bound of $O(\sigma^2 d \log T) + o(\log T)$, where $d$ is the dimension of the input vector, $T$ is the total number of rounds. We also prove a $\Omega(\sigma^2d\log(T/d))$ lower bound for stochastic online linear regression, which indicates that our upper bound is nearly optimal. In addition, we extend our analysis to a more refined Bernstein noise condition. As an application, we study generalized linear bandits with heteroscedastic noise and propose an algorithm based on FTRL to achieve the first variance-aware regret bound.


翻译:该论文研究了随机设置下广义线性回归在在线问题中的情况,其中标签来自于广义线性模型,包含可能无界的添加噪声。为此,本研究提供了FTRL算法的详细分析,以解决标签噪声问题。具体而言,针对$\sigma$-sub-Gaussian标签噪声,本文提出的分析可提供遗憾度的上界为$O(\sigma^2d\log T) + o(\log T)$,其中$d$是输入向量的维数,$T$是总的回合数。同时,我们还证明了随机在线线性回归的$\Omega(\sigma^2dlog(T/d))$下限,这表明了我们的上限与最优解几乎相同。此外,我们将我们的分析扩展到更为复杂的伯恩斯坦噪声条件。最后,以广义线性赌博机带有异方差噪声为例,提出了基于FTRL算法的解决方案,该方案可实现最佳的方差感知及遗憾上限。

0
下载
关闭预览

相关内容

【ICML2022】Sharp-MAML:锐度感知的模型无关元学习
专知会员服务
16+阅读 · 2022年6月10日
【ICLR2022】分布外泛化的不确定性建模
专知会员服务
41+阅读 · 2022年2月11日
【NeurIPS 2021】设置多智能体策略梯度的方差
专知会员服务
20+阅读 · 2021年10月24日
专知会员服务
50+阅读 · 2020年12月14日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
1+阅读 · 2023年5月14日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员