This paper proposes novel inferential procedures for the network Granger causality in high-dimensional vector autoregressive models. In particular, we offer two multiple testing procedures designed to control discovered networks' false discovery rate (FDR). The first procedure is based on the limiting normal distribution of the $t$-statistics constructed by the debiased lasso estimator. The second procedure is based on the bootstrap distributions of the $t$-statistics made by imposing the null hypotheses. Their theoretical properties, including FDR control and power guarantee, are investigated. The finite sample evidence suggests that both procedures can successfully control the FDR while maintaining high power. Finally, the proposed methods are applied to discovering the network Granger causality in a large number of macroeconomic variables and regional house prices in the UK.


翻译:本文提出了针对高维向量自回归模型中网络Granger因果关系的新型推断程序。具体来说,我们提供了两种多重检验程序,旨在控制发现网络的虚假发现率(FDR)。第一种程序是基于去偏Lasso估计器构造的$t$-统计量的极限正态分布。第二种程序基于对施加了零假设的$t$-统计量的自举分布构造。我们研究了它们的理论性质,包括FDR控制和功率保证。有限样本证据表明,两种程序都可以成功控制FDR,同时保持高功率。最后,我们将所提出的方法应用于发现英国大量的宏观经济变量和区域房价的网络Granger因果关系。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2021年8月8日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员