Despite its drawbacks, the complete case analysis is commonly used in regression models with missing covariates. Understanding when implementing complete cases will lead to consistent parameter estimation is vital before use. Here, our aim is to demonstrate when a complete case analysis is appropriate for a nuanced type of missing covariate, the randomly right-censored covariate. Across the censored covariate literature, different assumptions are made to ensure a complete case analysis produces a consistent estimator, which leads to confusion in practice. We make several contributions to dispel this confusion. First, we summarize the language surrounding the assumptions that lead to a consistent complete case estimator. Then, we show a unidirectional hierarchical relationship between these assumptions, which leads us to one sufficient assumption to consider before using a complete case analysis. Lastly, we conduct a simulation study to illustrate the performance of a complete case analysis with a right-censored covariate under different censoring mechanism assumptions, and we demonstrate its use with a Huntington disease data example.


翻译:摘要:尽管存在缺点,但完全样本分析通常用于存在缺失协变量的回归模型。在使用之前了解何时实施完全样本将导致一致的参数估计是至关重要的。本文的目的是演示何时对于一种复杂的缺失协变量类型——随机右截尾协变量,执行完全样本分析是合适的。在截尾协变量文献中,为确保完全样本分析产生一致估计值,做出了不同的假设,这导致了实践中的混乱。我们做出了几项贡献以消除这种混乱。首先,我们总结了导致一致完全样本估计值的假设背后的语言。然后,我们展示了这些假设之间的单向层次关系,这导致了我们需要考虑一个充分的假设,然后再使用完全样本分析。最后,我们进行了一个模拟研究,以说明在不同的截尾机制假设下,使用右截尾协变量的完全样本分析的表现,并演示了在亨廷顿病数据示例中如何使用它。

0
下载
关闭预览

相关内容

【干货书】工程和科学中的概率和统计,
专知会员服务
58+阅读 · 2022年12月24日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
因果推断,Causal Inference:The Mixtape
专知会员服务
106+阅读 · 2021年8月27日
专知会员服务
44+阅读 · 2020年12月18日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
生成扩散模型漫谈:最优扩散方差估计(上)
PaperWeekly
0+阅读 · 2022年9月25日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
生成扩散模型漫谈:最优扩散方差估计(上)
PaperWeekly
0+阅读 · 2022年9月25日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员