We propose an adjusted Wasserstein distributionally robust estimator -- based on a nonlinear transformation of the Wasserstein distributionally robust (WDRO) estimator in statistical learning. This transformation will improve the statistical performance of WDRO because the adjusted WDRO estimator is asymptotically unbiased and has an asymptotically smaller mean squared error. The adjusted WDRO will not mitigate the out-of-sample performance guarantee of WDRO. Sufficient conditions for the existence of the adjusted WDRO estimator are presented, and the procedure for the computation of the adjusted WDRO estimator is given. Specifically, we will show how the adjusted WDRO estimator is developed in the generalized linear model. Numerical experiments demonstrate the favorable practical performance of the adjusted estimator over the classic one.
翻译:我们提出了一种调整后的Wasserstein分布鲁棒估计——基于Wasserstein分布鲁棒(WDRO)估计的非线性转换。这种转换将改善WDRO的统计性能,因为调整后的WDRO估计是渐进无偏的,均方误差渐近更小。调整后的WDRO不会减少WDRO的样外性能保证。我们给出了存在调整后WDRO估计的充分条件,并介绍了计算调整后WDRO估计的过程。具体而言,我们将展示在广义线性模型中如何发展调整后的WDRO估计。数值实验展示了调整后的估计相对于经典估计的有利实际性能。