LiDAR Simultaneous Localization and Mapping (SLAM) systems are essential for enabling precise navigation and environmental reconstruction across various applications. Although current point-to-plane ICP algorithms perform effec- tively in structured, feature-rich environments, they struggle in scenarios with sparse features, repetitive geometric structures, and high-frequency motion. This leads to degeneracy in 6- DOF pose estimation. Most state-of-the-art algorithms address these challenges by incorporating additional sensing modalities, but LiDAR-only solutions continue to face limitations under such conditions. To address these issues, we propose a novel Degeneracy-Aware Multi-Metric LiDAR Odometry and Map- ping (DAMM-LOAM) module. Our system improves mapping accuracy through point cloud classification based on surface normals and neighborhood analysis. Points are classified into ground, walls, roof, edges, and non-planar points, enabling accurate correspondences. A Degeneracy-based weighted least squares-based ICP algorithm is then applied for accurate odom- etry estimation. Additionally, a Scan Context based back-end is implemented to support robust loop closures. DAMM-LOAM demonstrates significant improvements in odometry accuracy, especially in indoor environments such as long corridors
翻译:暂无翻译