Semantic communication (SemCom) shifts the focus from data transmission to meaning delivery, enabling efficient and intelligent communication. Existing AI-based coding schemes for multi-modal multi-task SemCom often require transmitters with full-modal data to participate in all receivers' tasks, which leads to redundant transmissions and conflicts with the physical limits of channel capacity and computational capability. In this paper, we propose PoM$^2$-DIB, a novel framework that extends the distributed information bottleneck (DIB) theory to address this problem. Unlike the typical DIB, this framework introduces modality selection as an additional key design variable, enabling a more flexible tradeoff between communication rate and inference quality. This extension selects only the most relevant modalities for task participation, adhering to the physical constraints, while following efficient DIB-based coding. To optimize selection and coding end-to-end, we relax modality selection into a probabilistic form, allowing the use of score function estimation with common randomness to enable optimizable coordinated decisions across distributed devices. Experimental results on public datasets verify that PoM$^2$-DIB achieves high inference quality compared to full-participation baselines in various tasks under physical limits.


翻译:语义通信将关注点从数据传输转向意义传递,实现了高效智能的通信。现有的多模态多任务语义通信AI编码方案通常要求发送端具备全模态数据并参与所有接收端的任务,这导致了冗余传输,并与信道容量和计算能力的物理限制相冲突。本文提出PoM$^2$-DIB,一种将分布式信息瓶颈理论扩展以解决该问题的新框架。与典型DIB不同,该框架引入模态选择作为额外的关键设计变量,实现了通信速率与推理质量之间更灵活的权衡。该扩展仅选择与任务最相关的模态参与,遵循物理约束,同时采用基于DIB的高效编码。为端到端优化选择与编码,我们将模态选择松弛为概率形式,允许利用公共随机性进行评分函数估计,从而实现分布式设备间可优化的协同决策。在公开数据集上的实验结果表明,在物理限制下,PoM$^2$-DIB在多种任务中相比全参与基线实现了更高的推理质量。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2020年2月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员