Semantic communication (SemCom) shifts the focus from data transmission to meaning delivery, enabling efficient and intelligent communication. Existing AI-based coding schemes for multi-modal multi-task SemCom often require transmitters with full-modal data to participate in all receivers' tasks, which leads to redundant transmissions and conflicts with the physical limits of channel capacity and computational capability. In this paper, we propose PoM$^2$-DIB, a novel framework that extends the distributed information bottleneck (DIB) theory to address this problem. Unlike the typical DIB, this framework introduces modality selection as an additional key design variable, enabling a more flexible tradeoff between communication rate and inference quality. This extension selects only the most relevant modalities for task participation, adhering to the physical constraints, while following efficient DIB-based coding. To optimize selection and coding end-to-end, we relax modality selection into a probabilistic form, allowing the use of score function estimation with common randomness to enable optimizable coordinated decisions across distributed devices. Experimental results on public datasets verify that PoM$^2$-DIB achieves high inference quality compared to full-participation baselines in various tasks under physical limits.
翻译:语义通信将关注点从数据传输转向意义传递,实现了高效智能的通信。现有的多模态多任务语义通信AI编码方案通常要求发送端具备全模态数据并参与所有接收端的任务,这导致了冗余传输,并与信道容量和计算能力的物理限制相冲突。本文提出PoM$^2$-DIB,一种将分布式信息瓶颈理论扩展以解决该问题的新框架。与典型DIB不同,该框架引入模态选择作为额外的关键设计变量,实现了通信速率与推理质量之间更灵活的权衡。该扩展仅选择与任务最相关的模态参与,遵循物理约束,同时采用基于DIB的高效编码。为端到端优化选择与编码,我们将模态选择松弛为概率形式,允许利用公共随机性进行评分函数估计,从而实现分布式设备间可优化的协同决策。在公开数据集上的实验结果表明,在物理限制下,PoM$^2$-DIB在多种任务中相比全参与基线实现了更高的推理质量。