Accurate geospatial information is crucial for safe, autonomous Inland Waterway Transport (IWT), as existing charts (IENC) lack real-time detail and conventional LiDAR SLAM fails in waterway environments. These challenges lead to vertical drift and non-semantic maps, hindering autonomous navigation. This paper introduces Inland-LOAM, a LiDAR SLAM framework for waterways. It uses an improved feature extraction and a water surface planar constraint to mitigate vertical drift. A novel pipeline transforms 3D point clouds into structured 2D semantic maps using voxel-based geometric analysis, enabling real-time computation of navigational parameters like bridge clearances. An automated module extracts shorelines and exports them into a lightweight, IENC-compatible format. Evaluations on a real-world dataset show Inland-LOAM achieves superior localization accuracy over state-of-the-art methods. The generated semantic maps and shorelines align with real-world conditions, providing reliable data for enhanced situational awareness. The code and dataset will be publicly available
翻译:精确的地理空间信息对于安全、自主的内陆水道运输至关重要,因为现有航道图缺乏实时细节,且传统激光雷达SLAM在水道环境中易失效。这些挑战导致垂直漂移和非语义地图的产生,阻碍了自主导航。本文提出了Inland-LOAM,一种面向水道的激光雷达SLAM框架。它采用改进的特征提取和水面平面约束来减轻垂直漂移。通过一种新颖的处理流程,利用基于体素的几何分析将三维点云转化为结构化的二维语义地图,从而能够实时计算桥梁净空等航行参数。一个自动化模块提取岸线,并将其导出为轻量级、兼容IENC的格式。在真实世界数据集上的评估表明,Inland-LOAM在定位精度上优于现有先进方法。生成的语义地图和岸线与实际情况吻合,为增强态势感知提供了可靠数据。代码与数据集将公开提供。