In this article, we study large-dimensional matrix factor models and estimate the factor loading matrices and factor score matrix by minimizing square loss function. Interestingly, the resultant estimators coincide with the Projected Estimators (PE) in Yu et al.(2022), which was proposed from the perspective of simultaneous reduction of the dimensionality and the magnitudes of the idiosyncratic error matrix. In other word, we provide a least-square interpretation of the PE for matrix factor model, which parallels to the least-square interpretation of the PCA for the vector factor model. We derive the convergence rates of the theoretical minimizers under sub-Gaussian tails. Considering the robustness to the heavy tails of the idiosyncratic errors, we extend the least squares to minimizing the Huber loss function, which leads to a weighted iterative projection approach to compute and learn the parameters. We also derive the convergence rates of the theoretical minimizers of the Huber loss function under bounded $(2+\epsilon)$th moment of the idiosyncratic errors. We conduct extensive numerical studies to investigate the empirical performance of the proposed Huber estimators relative to the state-of-the-art ones. The Huber estimators perform robustly and much better than existing ones when the data are heavy-tailed, and as a result can be used as a safe replacement in practice. An application to a Fama-French financial portfolio dataset demonstrates the empirical advantage of the Huber estimator.


翻译:在本篇文章中,我们研究大维矩阵要素模型,并通过尽量减少平方损失功能来估计因子装载矩阵和因子评分矩阵。有趣的是,由此得出的估计值与Yu等人(2022)的预计刺激器(PE)相吻合,这是从同时减少维度和特异性误差矩阵的大小的角度提出的。换句话说,我们为矩阵要素模型提供了对PE最不合理的解释,该模型与矢量系数模型对五氯苯的最小值解释相对应。我们得出了在亚加苏西尾巴下理论最小值最小值的趋同率。考虑到对超典型误差的重尾部的强力,我们扩大最小方形以尽量减少Huber损失函数的大小。这导致一种加权的迭代预测方法来计算和学习参数。我们还得出了与矢量组合系数值组合值值值相比的理论最小值损失函数的趋同率。我们从理论最小值最小值最小值的理论最小值中得出了亚性误差的趋近率率率。我们进行了广泛的实验性研究,以调查现行哈勃损失函数损失功能的较强的模型,作为较稳重的计算结果。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年1月23日
Arxiv
0+阅读 · 2023年1月21日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员