We propose a parametric sampling strategy for the reduction of large-scale PDE systems with multidimensional input parametric spaces by leveraging models of different fidelity. The design of this methodology allows a user to adaptively sample points ad hoc from a discrete training set with no prior requirement of error estimators. It is achieved by exploiting low-fidelity models throughout the parametric space to sample points using an efficient sampling strategy, and at the sampled parametric points, high-fidelity models are evaluated to recover the reduced basis functions. The low-fidelity models are then adapted with the reduced order models ( ROMs) built by projection onto the subspace spanned by the recovered basis functions. The process continues until the low-fidelity model can represent the high-fidelity model adequately for all the parameters in the parametric space. Since the proposed methodology leverages the use of low-fidelity models to assimilate the solution database, it significantly reduces the computational cost in the offline stage. The highlight of this article is to present the construction of the initial low-fidelity model, and a sampling strategy based on the discrete empirical interpolation method (DEIM). We test this approach on a 2D steady-state heat conduction problem for two different input parameters and make a qualitative comparison with the classical greedy reduced basis method (RBM), and further test on a 9-dimensional parametric non-coercive elliptic problem and analyze the computational performance based on different tuning of greedy selection of points.


翻译:我们提出一个参数抽样战略,以利用不同忠诚模型的模型,减少大型PDE系统,利用多维输入参数参数空间,减少大型PDE系统,利用多维输入参数空间。这一方法的设计使用户能够从一个不事先要求误差估计器的离散训练组中临时适应性抽样点;通过在整个参数空间利用低纤维模型,利用高效抽样战略,将样本点用于抽样点,对高纤维模型进行评估,以恢复减少的基础功能。然后,对低纤维模型进行调整,通过预测在回收基准功能所覆盖的子空间上建立减少的订单模型(ROMs)来调整。这一过程将持续到低纤维模型能够充分代表高纤维模型,从而实现这一目的;由于拟议方法利用低纤维模型来吸收解决方案数据库,因此大大降低了离线阶段的计算成本。本文章的重点是介绍最初的低纤维模型(ROMs)的构建,以及根据离散数据分析参数选择分空参数的子空间分层选择点的取样战略,以及基于连续测试方法的不透明性化测试方法(我们用不同标准测试方法),在连续进行双级数据级数据级分析-级分析-级分析-级分析-级分析-级分析-级分析-级分析-制制制制制制制制制制制制制制方法。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月14日
Arxiv
0+阅读 · 2023年3月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员