项目名称: Yang-Baxter矩阵方程解的研究与应用

项目编号: No.11501126

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 周端美

作者单位: 赣南师范大学

项目金额: 18万元

中文摘要: 由于矩阵方程AXA=XAX与自由参数Yang—Baxter方程形式上相似,所以这个方程叫做Yang—Baxter矩阵方程。Yang—Baxter方程在统计力学、纽结理论、C*-代数、辫子群和量子理论中是一个研究热点。但即使是这样一个简单的矩阵方程,在矩阵论中却还没有被进行很好的研究。一个原因是要找到所有的解是特别困难的。不管矩阵A是怎样的形式,方程都有 X = 0 和 X = A 这两个平凡解,因此只需求解非平凡解。.本项目将系统、深入地解决Yang—Baxter矩阵方程AXA=XAX的求解问题。给出方程解的解析解、解的性质;运用牛顿迭代算法,Halley方法,Chebyshev方法和super-Halley方法等方法创建方程的数值解,并给出收敛性分析。并为工程和技术人员解决相关应用问题提供科学依据。

中文关键词: Yang-Baxter矩阵方程;Brouwer;不动点定理;谱定理;Jordan标准型;投影

英文摘要: The matrix equation AXA=XAX is called here the Yang–Baxter matrix equation since it is similar in format to the one in the parameter-free Yang–Baxter equation. In the fields of statistical mechanics, knot theory, C*-algebra, braid groups, and quantum theory, the Yang–Baxter equation has been a hot research topic. However, to our knowledge even the relevant simple matrix equation has not been seriously explored in matrix theory. One reason is the fact that finding all the solutions is a difficult task. There are two trivial solutions, X = 0 and X = A, no matter what A is, so we seek only nontrivial solutions..This project will be systematic and in depth solve the solutions of the Yang—Baxter matrix equation. The analytic solutions will be given. The property of the solutions will be analyzed. Newton iterative algorithm, Halley algorithm, Chebyshev algorithm, and super-Halley algorithm will be designed. Convergence analysis will be established. The project will provide a scientific basis for engineering and technical personnel to solve the related application problems.

英文关键词: Yang-Baxter matrix equation;Brouwer’s fixed point theorem;Spectral theorem;Jordan canonical form;Projector

成为VIP会员查看完整内容
0

相关内容

【2022新书】谱图理论,Spectral Graph Theory,100页pdf
专知会员服务
74+阅读 · 2022年4月15日
专知会员服务
78+阅读 · 2021年10月19日
专知会员服务
212+阅读 · 2021年8月2日
专知会员服务
114+阅读 · 2021年7月24日
专知会员服务
33+阅读 · 2021年7月17日
【硬核书】图论、组合优化和算法手册,1217页pdf
专知会员服务
159+阅读 · 2021年6月29日
【干货书】分数图论:对图论的一种理性的探讨,167页pdf
专知会员服务
25+阅读 · 2021年4月13日
【斯坦福经典书】统计学稀疏性:Lasso与泛化性,362页pdf
专知会员服务
36+阅读 · 2020年11月15日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
经典教材《统计学习导论》Python版
专知
28+阅读 · 2020年10月19日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
Meta-Learning 元学习:学会快速学习
极市平台
75+阅读 · 2018年12月19日
【干货】理解深度学习中的矩阵运算
专知
12+阅读 · 2018年2月12日
机器之心最干的文章:机器学习中的矩阵、向量求导
深度学习世界
12+阅读 · 2018年2月7日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月15日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
小贴士
相关主题
相关VIP内容
【2022新书】谱图理论,Spectral Graph Theory,100页pdf
专知会员服务
74+阅读 · 2022年4月15日
专知会员服务
78+阅读 · 2021年10月19日
专知会员服务
212+阅读 · 2021年8月2日
专知会员服务
114+阅读 · 2021年7月24日
专知会员服务
33+阅读 · 2021年7月17日
【硬核书】图论、组合优化和算法手册,1217页pdf
专知会员服务
159+阅读 · 2021年6月29日
【干货书】分数图论:对图论的一种理性的探讨,167页pdf
专知会员服务
25+阅读 · 2021年4月13日
【斯坦福经典书】统计学稀疏性:Lasso与泛化性,362页pdf
专知会员服务
36+阅读 · 2020年11月15日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
相关资讯
经典教材《统计学习导论》Python版
专知
28+阅读 · 2020年10月19日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
Meta-Learning 元学习:学会快速学习
极市平台
75+阅读 · 2018年12月19日
【干货】理解深度学习中的矩阵运算
专知
12+阅读 · 2018年2月12日
机器之心最干的文章:机器学习中的矩阵、向量求导
深度学习世界
12+阅读 · 2018年2月7日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员