In recent years, generative adversarial networks (GANs) have demonstrated impressive experimental results while there are only a few works that foster statistical learning theory for GANs. In this work, we propose an infinite dimensional theoretical framework for generative adversarial learning. We assume that the probability density functions of the underlying measure are uniformly bounded, $k$-times $\alpha$-H\"{o}lder differentiable ($C^{k,\alpha}$) and uniformly bounded away from zero. Under these assumptions, we show that the Rosenblatt transformation induces an optimal generator, which is realizable in the hypothesis space of $C^{k,\alpha}$-generators. With a consistent definition of the hypothesis space of discriminators, we further show that the Jensen-Shannon divergence between the distribution induced by the generator from the adversarial learning procedure and the data generating distribution converges to zero. Under certain regularity assumptions on the density of the data generating process, we also provide rates of convergence based on chaining and concentration.


翻译:近年来,基因对抗网络(GANs)展示了令人印象深刻的实验结果,而只有少数工作能够促进GANs的统计学习理论。在这项工作中,我们提议了一个无限的维维理论框架来进行基因对抗学习。我们假设基本措施的概率密度功能是统一的,以美元为单位约束,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位计算得出试验的计算得出试验结果显示,其概率比较密度变化的概率密度的概率密度,其密度的概率密度值为单位为单位,其比重度值为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位为单位,以美元为单位,以美元为单位为单位计算计算计算计算计算,其为单位,其数值为单位为单位,其为单位,以美元,以美元为单位计算单位计算单位计算单位计算,其为单位计算,其为单位,其数值为单位计算其为单位计算得出其数值为单位计算其数值为单位计算其数值为单位,其数值为单位,其数值为单位,其数值为单位,其数值为单位,其数值为单位,其数值为单位,其为单位,其数值为单位为单位,计算其数值为单位,其数值为单位,其数值为单位,其数值为单位,其数值为单位,其数值为单位为单位为单位,其为单位,其为单位,其为单位,其为单位,其为单位,其为单位

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
38+阅读 · 2020年3月10日
Generative Adversarial Networks: A Survey and Taxonomy
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员