Our main result is designing an algorithm that returns a vertex cover of $\mathcal{G}^\star$ with size at most $(3/2+\epsilon)$ times the expected size of the minimum vertex cover, using only $O(n/\epsilon p)$ non-adaptive queries. This improves over the best-known 2-approximation algorithm by Behnezhad, Blum, and Derakhshan [SODA'22], who also show that $\Omega(n/p)$ queries are necessary to achieve any constant approximation. Our guarantees also extend to instances where edge realizations are not fully independent. We complement this upper bound with a tight $3/2$-approximation lower bound for stochastic graphs whose edges realizations demonstrate mild correlations.
翻译:我们的主要结果是设计一种算法, 返回顶层覆盖$\ mathcal{ G ⁇ star$, 其大小是最小顶层覆盖的预期大小的( 3/2 ⁇ / epsilon) $( 3/2 ⁇ ) 乘以最小顶层覆盖的预期大小, 仅使用 $O (n/\ epsilon p) $ 非适应性的查询。 这比贝尼沙德、 布卢姆 和德拉赫尚[ SODA' 22] 最著名的 2 匹配算法更好, 该算法还显示, $\ Omega (n/ p) 的查询对于实现任何恒定近近点都是必要的。 我们的保证还延伸到边缘实现不完全独立的事例。 我们用近端的3/2 美元近似度图的近似值较低约束线来补充这一上层, 其边缘能显示温度相关性的图。