We propose a simple iterative (SI) algorithm for the maxcut problem through fully using an equivalent continuous formulation. It does not need rounding at all and has advantages that all subproblems have explicit analytic solutions, the cut values are monotonically updated and the iteration points converge to a local optima in finite steps via an appropriate subgradient selection. Numerical experiments on G-set demonstrate the performance. In particular, the ratios between the best cut values achieved by SI and those by some advanced combinatorial algorithms in [Ann. Oper. Res. 248 (2017) 365] are at least $0.986$ and can be further improved to at least $0.997$ by a preliminary attempt to break out of local optima.
翻译:----
我们通过完全利用一个等价的连续形式,提出了一种简单迭代算法(SI)解决最大割问题。它根本不需要舍入,并且有以下优点:所有的子问题都有明确的分析解,切割值逐步更新,迭代点通过适当的次梯度选择有限步收敛到局部最优解。对G-set的数字实验表明了性能。特别是,SI实现的最佳切割值与[Ann. Oper. Res. 248(2017)365]中一些先进的组合算法实现的最佳切割值之间的比值至少为0.986,并且可以通过首先尝试摆脱局部最优解而进一步提高至至少0.997。