In a seminal paper, Kannan and Lov\'asz (1988) considered a quantity $\mu_{KL}(\Lambda,K)$ which denotes the best volume-based lower bound on the covering radius $\mu(\Lambda,K)$ of a convex body $K$ with respect to a lattice $\Lambda$. Kannan and Lov\'asz proved that $\mu(\Lambda,K) \leq n \cdot \mu_{KL}(\Lambda,K)$ and the Subspace Flatness Conjecture by Dadush (2012) claims a $O(\log n)$ factor suffices, which would match the lower bound from the work of Kannan and Lov\'asz. We settle this conjecture up to a constant in the exponent by proving that $\mu(\Lambda,K) \leq O(\log^{7}(n)) \cdot \mu_{KL} (\Lambda,K)$. Our proof is based on the Reverse Minkowski Theorem due to Regev and Stephens-Davidowitz (2017). Following the work of Dadush (2012, 2019), we obtain a $(\log n)^{O(n)}$-time randomized algorithm to solve integer programs in $n$ variables. Another implication of our main result is a near-optimal flatness constant of $O(n \log^{8}(n))$.
翻译:在一篇开创性的论文中,Kannan和Lov\'asz(1988)考虑了一个量$\mu_{KL}(\Lambda,K),$它标识了关于格点$\Lambda$与凸体$K$之间的覆盖半径$\mu(\Lambda,K)$的最佳基于体积的下界。Kannan和Lov\'asz证明了$\mu(\Lambda,K) \leq n \cdot \mu_{KL}(\Lambda,K)$,而Dadush(2012)的子空间平坦猜想则声称$O(\log n)$因子就足够了,这可以匹配Kannan和Lov\'asz的工作中的下界。我们通过证明$\mu(\Lambda,K)\leq O(\log^{7}(n))\cdot\mu_{KL}(\Lambda,K)$解决了这一猜想,且指数中的常数位不确定。我们的证明基于Regev和Stephens-Davidowitz(2017)提出的Reverse Minkowski Theorem。借鉴Dadush(2012,2019)的工作,我们得到了一个$(\log n)^{O(n)}$时间随机算法来解决$n$个变量的整数规划问题。我们主要结果的另一个推论是近乎最优的平坦常数为$O(n\log^{8}(n))$。