This paper addresses the closed-loop control of an actuator with both a continuous input variable (motor torque) and a discrete input variable (mode selection). In many applications, robots have to bear large loads while moving slowly and also have to move quickly through the air with almost no load, leading to conflicting requirements for their actuators. An actuator with multiple gear ratios, like in a powertrain, can address this issue by allowing an effective use of power over a wide range of output speed. However, having discrete modes of operation adds complexity to the high-level control and planning. Here a controller for two-speed actuators that automatically select both the best gear ratio and the motor torque is developed. The approach is to: first derive a low-dimensional model, then use dynamic programming to find the best actions for all possible situations, and last use regression analysis to extract simplified global feedback laws. This approach produces simple practical nearly-optimal feedback laws. A controller that globally minimizes a quadratic cost function is derived for a two-speed actuator prototype, global stability is proven and performance is demonstrated experimentally.
翻译:本文用连续输入变量( Motor torrque) 和一个离散输入变量( 模式选择 ) 处理一个驱动器的闭路控制。 在许多应用中, 机器人必须承受大量负荷, 同时缓慢移动, 还必须在空气中快速移动, 几乎没有负载, 导致对驱动器的要求出现冲突 。 具有多重齿轮比率的驱动器, 如在电源列中, 可以通过允许在广泛的输出速度上有效使用电源来解决这个问题 。 但是, 使用离散的操作模式会增加高层控制和规划的复杂性 。 在此开发一个双速度操作器的控制器, 自动选择最佳齿轮比和发动机托轮。 这种方法是: 首先开发一个低维度模型, 然后使用动态程序来寻找所有可能情况下的最佳行动, 最后使用回归分析来获取简化的全球反馈法 。 这种方法产生简单实用的近于最优化的反馈法 。 一个全球最小化的二次调节器, 将二次速度成本函数降为两个速度的动作原型, 全球稳定得到验证, 并实验性表现 。