Variance reduction techniques such as SPIDER/SARAH/STORM have been extensively studied to improve the convergence rates of stochastic non-convex optimization, which usually maintain and update a sequence of estimators for a single function across iterations. {\it What if we need to track multiple functional mappings across iterations but only with access to stochastic samples of $\mathcal{O}(1)$ functional mappings at each iteration?} There is an important application in solving an emerging family of coupled compositional optimization problems in the form of $\sum_{i=1}^m f_i(g_i(\mathbf{w}))$, where $g_i$ is accessible through a stochastic oracle. The key issue is to track and estimate a sequence of $\mathbf g(\mathbf{w})=(g_1(\mathbf{w}), \ldots, g_m(\mathbf{w}))$ across iterations, where $\mathbf g(\mathbf{w})$ has $m$ blocks and it is only allowed to probe $\mathcal{O}(1)$ blocks to attain their stochastic values and Jacobians. To improve the complexity for solving these problems, we propose a novel stochastic method named Multi-block-Single-probe Variance Reduced (MSVR) estimator to track the sequence of $\mathbf g(\mathbf{w})$. It is inspired by STORM but introduces a customized error correction term to alleviate the noise not only in stochastic samples for the selected blocks but also in those blocks that are not sampled. With the help of the MSVR estimator, we develop several algorithms for solving the aforementioned compositional problems with improved complexities across a spectrum of settings with non-convex/convex/strongly convex objectives. Our results improve upon prior ones in several aspects, including the order of sample complexities and dependence on the strong convexity parameter. Empirical studies on multi-task deep AUC maximization demonstrate the better performance of using the new estimator.


翻译:正在广泛研究DIDR/ SARAH/STORM 等减少差异的技术, 以改善以 $\ scumci=1 i_ i_i( g_i (mathb{w}) 的形式出现的组合组合组合组合的组合式优化优化率, 该组合通常会维持并更新用于跨迭代的单一函数的估算器序列。 ~ 如果我们需要跟踪跨迭代的多重功能映射, 但只有在每次迭代都访问 $\ mathcal{O} 功能映射器样本时, 才能跟踪和估计 $\ mathcal 的序列 。 仅以 mathbfw{w} (g_\\\\ mache) 的调色化器, 以 $xxxx 格式( m) 的精化器的精度优化。 以 =\\\\ max max 的直径解度显示, 以 美元 的直流解器的直径解器的精度 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月10日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员