We consider the approximation of some optimal control problems for the Navier-Stokes equation via a Dynamic Programming approach. These control problems arise in many industrial applications and are very challenging from the numerical point of view since the semi-discretization of the dynamics corresponds to an evolutive system of ordinary differential equations in very high dimension. The typical approach is based on the Pontryagin maximum principle and leads to a two point boundary value problem. Here we present a different approach based on the value function and the solution of a Bellman, a challenging problem in high dimension. We mitigate the curse of dimensionality via a recent multilinear approximation of the dynamics coupled with a dynamic programming scheme on a tree structure. We discuss several aspects related to the implementation of this new approach and we present some numerical examples to illustrate the results on classical control problems studied in the literature.
翻译:我们认为,通过动态编程方法,纳维埃-斯托克斯等式的一些最佳控制问题近似于一些最佳控制问题。这些控制问题在许多工业应用中出现,而且从数字观点来看,这些控制问题非常具有挑战性,因为动态的半分化相当于一个非常高的普通差异方程式的演进系统。典型的方法以Pontryagin最大原则为基础,并导致两个点边界值问题。我们在这里提出了一个基于价值函数和Bellman的解决方案的不同方法,这是一个具有高度挑战性的问题。我们通过最近对动态的多线性近似和树木结构的动态编程计划来减轻维度的诅咒。我们讨论了与实施这一新方法有关的几个方面,我们提出了一些数字例子,以说明文献研究的典型控制问题的结果。