The classical pattern matching paradigm is that of seeking occurrences of one string - the pattern, in another - the text, where both strings are drawn from an alphabet set $\Sigma$. Assuming the text length is $n$ and the pattern length is $m$, this problem can naively be solved in time $O(nm)$. In Knuth, Morris and Pratt's seminal paper of 1977, an automaton, was developed that allows solving this problem in time $O(n)$ for any alphabet. This automaton, which we will refer to as the {\em KMP-automaton}, has proven useful in solving many other problems. A notable example is the {\em parameterized pattern matching} model. In this model, a consistent renaming of symbols from $\Sigma$ is allowed in a match. The parameterized matching paradigm has proven useful in problems in software engineering, computer vision, and other applications. It has long been suspected that for texts where the symbols are uniformly random, the naive algorithm will perform as well as the KMP algorithm. In this paper we examine the practical efficiency of the KMP algorithm vs. the naive algorithm on a randomly generated text. We analyse the time under various parameters, such as alphabet size, pattern length, and the distribution of pattern occurrences in the text. We do this for both the original exact matching problem and parameterized matching. While the folklore wisdom is vindicated by these findings for the exact matching case, surprisingly, the KMP algorithm works significantly faster than the naive in the parameterized matching case. We check this hypothesis for DNA texts, and observe a similar behaviour as in the random text. We also show a very structured case where the automaton is much more efficient.


翻译:经典模式匹配范式的典型模式是寻找一个字符串的出现 — 在另一个字符串的格局中, 在另一个文本中, 两种字符串都是用字母设置的 $\ sigma$ 。 假设文本长度为 $n美元, 模式长度为 $ 美元, 这个问题可以天真地在时间上解决 $O( n) 美元。 在Knuth, Morris 和 Pratt 的1977 的原始文件“ 自动图案 ” 中, 开发了一种能够及时解决任何字母使用O( n) 美元问题的典型模式。 这个“ 直观”, 我们称之为 $ em KMP- automaton}, 已经证明它对于解决许多其他问题的都有用。 一个显著的例子是 : 文本的自动图案, 我们用直径直径直的直线算算法, 我们用直径直线算法的比KMP 运算法, 我们用直径直径的比直径的直径比直径, 。 我们用直径直径直地分析KMP 运算法, 我们用直径比直径算法的直径直径直径直地算法, 我们用直径直判判判判判的直判判判判, 。

0
下载
关闭预览

相关内容

Alphabet is mostly a collection of companies. This newer Google is a bit slimmed down, with the companies that are pretty far afield of our main internet products contained in Alphabet instead.
abc.xyz/
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月11日
Arxiv
0+阅读 · 2022年9月7日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员