The halfspace depth is a well studied tool of nonparametric statistics in multivariate spaces, naturally inducing a multivariate generalisation of quantiles. The halfspace depth of a point with respect to a measure is defined as the infimum mass of closed halfspaces that contain the given point. In general, a closed halfspace that attains that infimum does not have to exist. We introduce a flag halfspace - an intermediary between a closed halfspace and its interior. We demonstrate that the halfspace depth can be equivalently formulated also in terms of flag halfspaces, and that there always exists a flag halfspace whose boundary passes through any given point $x$, and has mass exactly equal to the halfspace depth of $x$. Flag halfspaces allow us to derive theoretical results regarding the halfspace depth without the need to differentiate absolutely continuous measures from measures containing atoms, as was frequently done previously. The notion of flag halfspaces is used to state results on the dimensionality of the halfspace median set for random samples. We prove that under mild conditions, the dimension of the sample halfspace median set of $d$-variate data cannot be $d-1$, and that for $d=2$ the sample halfspace median set must be either a two-dimensional convex polygon, or a data point. The latter result guarantees that the computational algorithm for the sample halfspace median form the R package TukeyRegion is exact also in the case when the median set is less-than-full-dimensional in dimension $d=2$.


翻译:半空深度是一个在多变量空间中进行非参数统计的很好研究的工具, 自然会引出一个多位数的多位数一般化。 一个测量点的半空深度被定义为包含给定点的封闭半空半空的最小质量。 一般而言, 一个达到最小值的封闭半空不一定要存在。 我们引入了半空( 一个封闭半空与其内部的中间体) 。 我们证明半空的深度也可以以旗半空的半空尺寸来配制, 并且始终存在一个旗半空, 其边界通过任何给定点 $x$, 其质量与包含给定点的半空半空半空深度完全相等。 旗半空空间的封闭半空空间( 一个封闭半空半空半空半空半空半空半空), 以美元为正值的半空半空半空半空半空半空半空半空半空半空半空半空(一个半空半空半空半空半空半空半空半空半空半空半空半空半空半空基), 以美元为半空半空半空半空半空半空半空半空半空半空基(一个半空半空半空半空半空半空半空半空半空基) 数据组, 以美元为基数据为基数的半空半空半空半空半空基数(一个半空半空基数为基), 基数为基数(一个半空半空基), 基数为基数为基数为基数, 。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员