项目名称: 基于灰色神经网络模型的地球定向参数预报

项目编号: No.U1231105

项目类型: 联合基金项目

立项/批准年度: 2013

项目学科: 天文学、地球科学

项目作者: 王琪洁

作者单位: 中南大学

项目金额: 64万元

中文摘要: 针对地球自转变化复杂的时变特性,本项目采用高效的灰色神经网络组合模型来预报地球定向参数(EOP)。由于固体地球及环绕着它的流体圈层构成一个近似封闭的动力学系统,角动量守恒原理表明,大气或海洋角动量的任何变化都会影响固体地球的自转变化。将大气、海洋角动量时间序列引入到地球自转变化预报中,相当于增加物理约束条件。正是基于此,本项目着重研究和探索应用灰色神经网络组合模型,将大气和海洋角动量时间序列同时引入到地球自转变化预报中,改善地球定向参数的预报精度,本项目:(1)将灰色系统思想与神经网络有机地结合起来,构成灰色神经网络,发挥两者的优势,对提高预报效率具有重要意义;(2)将大气、海洋引入EOP预报,对提高EOP预报精度和稳定性具有重要的科学意义;(3)对于丰富EOP预报理论,提高深空探测器导航与追踪精度、维持坐标系统和时间系统,建立我国自主的高精度EOP预报方法和系统具有重要的科学和现实意义。

中文关键词: 地球定向参数;广义回归神经网络;灰色模型;实时快速预报;海洋角动量

英文摘要: In view of the complex time-variable characteristics of the Earth’s variable rotation,this study employs the efficient Grey- General Regression Neural Network (G-GRNN) to predict the Earth Orientation Parameter (EOP). As the solid Earth and its surrounding fluid layers form an approximately close dynamic system, changes of atmospheric or oceanic angular momentum (OAM) will result in variations in the solid Earth’s rotation, according to the conservation law of angular momentum. When the atmospheric angular momentum (AAM) and OAM series are incorporated into the prediction of the Earth’s variable rotation, it will impose physical constraints to the prediction. This project focuses on incorporating the AAM and OAM series into the prediction of the Earth’s variable rotation to improve accuracies of the EOP predictions by G-GRNN model. This study will contribute to improve the efficiency, accuracy and stability of EOP prediction by fusing grey model and GRNN, and introducing of the AAM and OAM series. This will inrich the theory of EOP prediction, improve the accuracy of high-space navigation, tracking, and coordinate and time system maintainment, and benefit the construction of our own high accuracy EOP prediction method and system.

英文关键词: Earth Orientation Parameter;GRNN;Grey model;Real-time rapid Prediction;Oceanic Angular Momentum (OAM)

成为VIP会员查看完整内容
0

相关内容

WSDM 2022 | 基于图神经网络的协同过滤设计空间研究
专知会员服务
36+阅读 · 2022年1月3日
专知会员服务
37+阅读 · 2021年8月31日
专知会员服务
41+阅读 · 2021年6月2日
【WSDM2021】基于演化状态图的时间序列事件预测
专知会员服务
52+阅读 · 2020年12月1日
专知会员服务
45+阅读 · 2020年11月13日
专知会员服务
73+阅读 · 2020年5月21日
专知会员服务
107+阅读 · 2020年5月21日
单个GPU也能训练GPT-3!快来看看HP调优新范式吧!
大数据文摘
0+阅读 · 2022年4月10日
仅需几天,简约神经网络更快地发现物理定律
机器之心
0+阅读 · 2021年12月25日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
13+阅读 · 2020年4月12日
小贴士
相关VIP内容
WSDM 2022 | 基于图神经网络的协同过滤设计空间研究
专知会员服务
36+阅读 · 2022年1月3日
专知会员服务
37+阅读 · 2021年8月31日
专知会员服务
41+阅读 · 2021年6月2日
【WSDM2021】基于演化状态图的时间序列事件预测
专知会员服务
52+阅读 · 2020年12月1日
专知会员服务
45+阅读 · 2020年11月13日
专知会员服务
73+阅读 · 2020年5月21日
专知会员服务
107+阅读 · 2020年5月21日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员