In practice, optimal screening designs for arbitrary run sizes are traditionally generated using the D-criterion with factor settings fixed at +/- 1, even when considering continuous factors with levels in [-1, 1]. This paper identifies cases of undesirable estimation variance properties for such D-optimal designs and argues that generally A-optimal designs tend to push variances closer to their minimum possible value. New insights about the behavior of the criteria are found through a study of their respective coordinate-exchange formulas. The study confirms the existence of D-optimal designs comprised only of settings +/- 1 for both main effect and interaction models for blocked and un-blocked experiments. Scenarios are also identified for which arbitrary manipulation of a coordinate between [-1, 1] leads to infinitely many D-optimal designs each having different variance properties. For the same conditions, the A-criterion is shown to have a unique optimal coordinate value for improvement. We also compare Bayesian version of the A- and D-criteria in how they balance minimization of estimation variance and bias. Multiple examples of screening designs are considered for various models under Bayesian and non-Bayesian versions of the A- and D-criteria.
翻译:在实践中,对任意运行尺寸的最佳筛选设计传统上是使用D-标准生成的,系数设置设定为+/-1,即使考虑到[-1,1] 中水平的连续因素。本文件查明了这种D-最佳设计不理想的估计差异特性,并论证说,一般来说A-最佳设计倾向于将差异拉近到其可能的最低值。通过对各自协调交换公式的研究,可以发现关于标准行为的新认识。研究确认D-最佳设计的存在仅包括设置+/-1,主要效果和阻塞和无阻试验互动模型的设置+/-1。对于这种情况,还查明了[-1,1]之间任意操纵一个协调点导致无限多D-最佳设计,每个协调点都有不同的差异特性。对于同样的情况,A-标准显示有一个独特的最佳协调价值,我们还比较了A-和D标准Bayesian版本的A-标准与D-标准如何平衡估计差异和偏差的最小度。在Bayesian和非BA-标准版本和D-标准-标准-D-标准-D-标准下的各种模型中,可考虑筛选设计的许多例子。