Fusion-based hyperspectral image (HSI) super-resolution has become increasingly prevalent for its capability to integrate high-frequency spatial information from the paired high-resolution (HR) RGB reference image. However, most of the existing methods either heavily rely on the accurate alignment between low-resolution (LR) HSIs and RGB images, or can only deal with simulated unaligned RGB images generated by rigid geometric transformations, which weakens their effectiveness for real scenes. In this paper, we explore the fusion-based HSI super-resolution with real RGB reference images that have both rigid and non-rigid misalignments. To properly address the limitations of existing methods for unaligned reference images, we propose an HSI fusion network with heterogenous feature extractions, multi-stage feature alignments, and attentive feature fusion. Specifically, our network first transforms the input HSI and RGB images into two sets of multi-scale features with an HSI encoder and an RGB encoder, respectively. The features of RGB reference images are then processed by a multi-stage alignment module to explicitly align the features of RGB reference with the LR HSI. Finally, the aligned features of RGB reference are further adjusted by an adaptive attention module to focus more on discriminative regions before sending them to the fusion decoder to generate the reconstructed HR HSI. Additionally, we collect a real-world HSI fusion dataset, consisting of paired HSI and unaligned RGB reference, to support the evaluation of the proposed model for real scenes. Extensive experiments are conducted on both simulated and our real-world datasets, and it shows that our method obtains a clear improvement over existing single-image and fusion-based super-resolution methods on quantitative assessment as well as visual comparison.
翻译:在本文中,我们探索基于聚合的超光谱图像(HSI)超级分辨率,其整合高分辨率高分辨率(HR) RGB参考图像的高频空间信息的能力日益普遍。然而,大多数现有方法要么严重依赖低分辨率(LR) HSI和RGB图像之间的准确匹配,要么只能处理由僵硬的几何变生成的模拟不匹配 RGB图像,这削弱了它们对于真实场景的有效性。在本文中,我们探索基于聚合的HSI超级分辨率(HSI)超级分辨率,其真正的 RGB参考图像既具有僵硬性,也有非硬性误差。为了适当解决现有不匹配参考图像方法的局限性,我们建议使用高分辨率(LRHR) HSI集成网络,多阶段功能组合网络集成低分辨率(LLRGB)图像,多阶段功能组合组合组合,将我们目前基于 HSI 和 RGB 直流流化的智能图像(RGB ) 的在线参考集成一个不台阶参考模块, 将我们当前甚清晰的 RGB 的智能数据定位(RGB ) 数据转换到更清晰的智能模块, 的模型(RGB ) 的模型(OGB) 的模型(LI) 重新定位) 的模型(LI) 数据定位) 的模型(O) 数据定位) 的模型(LI) 数据定位) 的模型(O) 数据定位) 的模型(SL) 的模型(O) 数据定位) 的模型(SLI 的模型(SLI ) 的精确定位) 数据定位) 的模型(LU) 的模型(LI) 的模型(S) 数据定位) 最终的模型(S) 的模型(S) 的模型(S) ) ) 的模型(S) ) 的模型(S) 和模型(O) 数据定位) 的模型(LVLU) ) 的定位(OLID) 的定位) 的定位,将它的模型(SL) 和数据定位) 的定位) ) 的模型(OLI) 的定位的精确化数据定位) 和数据定位(O) 的定位(OLO)