We investigate the security assumptions behind three public-key quantum money schemes. Aaronson and Christiano proposed a scheme based on hidden subspaces of the vector space $\mathbb{F}_2^n$ in 2012. It was conjectured by Pena et al in 2015 that the hard problem underlying the scheme can be solved in quasi-polynomial time. We confirm this conjecture by giving a polynomial time quantum algorithm for the underlying problem. Our algorithm is based on computing the Zariski tangent space of a random point in the hidden subspace. Zhandry proposed a scheme based on multivariate hash functions in 2017. We give a polynomial time quantum algorithm for cloning a money state with high probability. Our algorithm uses the verification circuit of the scheme to produce a banknote from a given serial number. Kane, Sharif and Silverberg proposed a scheme based on quaternion algebras in 2021. The underlying hard problem in their scheme is cloning a quantum state that represents an eigenvector of a set of Hecke operators. We give a polynomial time quantum reduction from this hard problem to a linear algebra problem. The latter problem is much easier to understand, and we hope that our reduction opens new avenues to future cryptanalyses of this scheme.
翻译:我们调查了三种公共钥匙量子资金计划背后的安全假设。 Aaronson 和 Christiano 于2012年提出了一个基于矢量空间隐藏子空间的子空间的计划 $\ mathbb{F ⁇ 2 ⁇ n$ 2012, Pena等人于2015年推测,该计划背后的棘手问题可以在准极代时间里解决。我们通过给根本问题提供一个多元时间量子算法来证实这一推测。我们的算法基于计算Zariski 暗藏子空间中随机点的离子空间。Zhandry 于2017年提出了一个基于多变数散函数的计划。我们给极有可能的货币克隆提供了一个多边时间量子算法。我们的算法利用该计划的核查渠道从一个特定的序列号产生一张钞票。Kane, Sharif和Silverberg 提出了一个基于2021年Keyniononononononion algebras的计划。 其根本的难题是克隆量子空间的随机状态,它代表着一组赫克操作者的一种精准的功能。我们给一个多元量子在2017年进行克隆时段的解算,我们从一个从一个未来的硬递解问题到一个新的线问题。