We study a new algorithmic process of graph growth which starts from a single initial vertex and operates in discrete time-steps, called \emph{slots}. In every slot, the graph grows via two operations (i) vertex generation and (ii) edge activation. The process completes at the last slot where a (possibly empty) subset of the edges of the graph will be removed. Removed edges are called \emph{excess edges}. The main problem investigated in this paper is: Given a target graph $G$, we are asked to design an algorithm that outputs such a process growing $G$, called a \emph{growth schedule}. Additionally, the algorithm should try to minimize the total number of slots $k$ and of excess edges $\ell$ used by the process. We provide both positive and negative results for different values of $k$ and $\ell$, with our main focus being either schedules with sub-linear number of slots or with zero excess edges.
翻译:我们研究一个新的图形增长算法过程,它从一个最初的顶点开始,以离散的时间步骤运行,称为\emph{slots}。在每一个槽中,图形通过两个操作增长 (一) 顶点生成和(二) 边缘激活。该过程在最后一个槽中完成,该槽中将删除图形边缘的一个(可能为空的)子项。移除边缘被称为 emph{excess 边缘}。本文调查的主要问题是 : 如果有一个目标图形$G$, 我们被要求设计一个算法, 输出这样一个进程, 增加$G$, 称为\emph{crowing schets} 。 此外, 算法应试图将槽的总数( $k$ ) 和 超值 $\ell$ 。 我们对不同的值( $k$ 和 $\\ ell$) 提供正和负结果, 我们的主要焦点是用子线串数或零超值来设定计划。