With powerful quantum computers already built, we need more efficient quantum algorithms to achieve quantum supremacy over classical computers in the noisy intermediate-scale quantum (NISQ) era. Grover's search algorithm and its generalization, quantum amplitude amplification, provide quadratic speedup in solving many important scientific problems. However, they still have exponential time complexity as the depths of their quantum circuits increase exponentially with the number of qubits. To address this problem, we propose a new algorithm, Variational Quantum Search (VQS), which is based on the celebrated variational quantum algorithms and includes a parameterized quantum circuit, known as Ansatz. We show that a depth-10 Ansatz can amplify the total probability of $k$ ($k \geq 1$) good elements, out of $2^n$ elements represented by $n$+1 qubits, from $k/2^n$ to nearly 1, as verified for $n$ up to 26, and that the maximum depth of quantum circuits in the VQS increases linearly with the number of qubits. We demonstrate that a depth-56 circuit in VQS can replace a depth-270,989 circuit in Grover's algorithm, and thus VQS is more suitable for NISQ computers. We envisage our VQS could exponentially speed up the solutions to many important problems, including the NP-complete problems, which is widely considered impossible.


翻译:强大的量子计算机已经建成,我们需要更高效的量子算法,以便在吵闹的中间级量子(NISQ)时代实现对古型计算机的量子优势。 Grover的搜索算法及其参数化量子电路,即量振幅放大法,提供了解决许多重要科学问题的二次加速。然而,随着量子电路深度随着Qbits的数量增加而成倍增长,它们仍然具有指数性的时间复杂性。为了解决这个问题,我们提议了一种新的算法,即量子搜索(VQS),该算法以已知的变异量算法为基础,包括一个称为Ansatz的参数化量子电路。我们表明,深度为10安萨茨的量子算法可以扩大美元(Geg)1美元的总概率。随着量子电路的深度随着Qbits数量的增加而成倍增倍增倍增。我们提出了一个新的算法,即以美元为26美元的量子搜索(VQS)搜索(VQS),其最大深度以已知的量电路程增加线性速度与QQ的深度。我们所考虑的是VS的深度,也就是的深度可以用来取代Q的电路段。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月16日
Arxiv
0+阅读 · 2023年2月15日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关主题
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员