We prove concentration bounds for the following classes of quantum states: (i) output states of shallow quantum circuits, answering an open question from [DPMRF22]; (ii) injective matrix product states; (iii) output states of dense Hamiltonian evolution, i.e. states of the form $e^{\iota H^{(p)}} \cdots e^{\iota H^{(1)}} |\psi_0\rangle$ for any $n$-qubit product state $|\psi_0\rangle$, where each $H^{(i)}$ can be any local commuting Hamiltonian satisfying a norm constraint, including dense Hamiltonians with interactions between any qubits. Our proofs use polynomial approximations to show that these states are close to local operators. This implies that the distribution of the Hamming weight of a computational basis measurement (and of other related observables) concentrates. An example of (iii) are the states produced by the quantum approximate optimisation algorithm (QAOA). Using our concentration results for these states, we show that for a random spin model, the QAOA can only succeed with negligible probability even at super-constant level $p = o(\log \log n)$, assuming a strengthened version of the so-called overlap gap property. This gives the first limitations on the QAOA on dense instances at super-constant level, improving upon the recent result [BGMZ22].
翻译:我们证明以下几类量子状态的浓度界限:(一) 浅量电路的输出状态,回答[DPMRF22] 的一个未决问题;(二) 定向矩阵产品状态;(三) 密密尔顿进化的密集输出状态,即以美元为单位的汉密尔顿进化(p) ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 0 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇