This paper presents Recorder, a parallel I/O tracing tool designed to capture comprehensive I/O information on HPC applications. Recorder traces I/O calls across various I/O layers, storing all function parameters for each captured call. The volume of stored information scales linearly the application's execution scale. To address this, we present a sophisticated pattern-recognition-based compression algorithm. This algorithm identifies and compresses recurring I/O patterns both within individual processes and across multiple processes, significantly reducing space and time overheads. We evaluate the proposed compression algorithm using I/O benchmarks and real-world applications, demonstrating that Recorder can store more information while requiring approximately 12x less storage space compared to its predecessor. Notably, for applications with typical parallel I/O patterns, Recorder achieves a constant trace size regardless of execution scale. Additionally, a comparison with the profiling tool Darshan shows that Recorder captures detailed I/O information without incurring substantial overhead. The richer data collected by Recorder enables new insights and facilitates more in-depth I/O studies, offering valuable contributions to the I/O research community.
翻译:暂无翻译