Online news recommender systems aim to address the information explosion of news and make personalized recommendation for users. In general, news language is highly condensed, full of knowledge entities and common sense. However, existing methods are unaware of such external knowledge and cannot fully discover latent knowledge-level connections among news. The recommended results for a user are consequently limited to simple patterns and cannot be extended reasonably. Moreover, news recommendation also faces the challenges of high time-sensitivity of news and dynamic diversity of users' interests. To solve the above problems, in this paper, we propose a deep knowledge-aware network (DKN) that incorporates knowledge graph representation into news recommendation. DKN is a content-based deep recommendation framework for click-through rate prediction. The key component of DKN is a multi-channel and word-entity-aligned knowledge-aware convolutional neural network (KCNN) that fuses semantic-level and knowledge-level representations of news. KCNN treats words and entities as multiple channels, and explicitly keeps their alignment relationship during convolution. In addition, to address users' diverse interests, we also design an attention module in DKN to dynamically aggregate a user's history with respect to current candidate news. Through extensive experiments on a real online news platform, we demonstrate that DKN achieves substantial gains over state-of-the-art deep recommendation models. We also validate the efficacy of the usage of knowledge in DKN.


翻译:在线新闻建议系统旨在处理新闻信息爆炸,并为用户提出个性化建议。一般来说,新闻语言高度精密,充满知识实体和常识,但现有方法并不了解这些外部知识,无法充分发现新闻之间的潜在知识水平联系。因此,对用户的建议结果仅限于简单模式,无法合理扩展。此外,新闻建议还面临新闻高度时间敏感和用户利益动态多样性的挑战。为了解决上述问题,本文件提出一个深层次的知识意识网络(DKN),将知识图表反映纳入新闻建议。DKN是一个基于内容的深度建议框架,用于点击通速预测。DKN的关键组成部分是一个多频道和文字调整知识水平的动态神经网络(KN),它将新闻的语义层次和知识层次的表达结合起来。为了解决上述问题,我们在本革命期间明确保持其一致性关系。此外,为了满足用户的不同兴趣,我们还设计了一个基于内容的深度使用率的深层次建议框架。DKN公司的主要内容是,我们设计了一个多层次的DK数据库数据库数据库,我们通过一个对动态历史候选人进行实质性的访问。

22
下载
关闭预览

相关内容

17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
171+阅读 · 2020年2月13日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
6+阅读 · 2018年5月18日
VIP会员
相关VIP内容
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
171+阅读 · 2020年2月13日
Top
微信扫码咨询专知VIP会员