We consider an interesting problem-salient instance segmentation in this paper. Other than producing bounding boxes, our network also outputs high-quality instance-level segments. Taking into account the category-independent property of each target, we design a single stage salient instance segmentation framework, with a novel segmentation branch. Our new branch regards not only local context inside each detection window but also its surrounding context, enabling us to distinguish the instances in the same scope even with obstruction. Our network is end-to-end trainable and runs at a fast speed (40 fps when processing an image with resolution 320x320). We evaluate our approach on a publicly available benchmark and show that it outperforms other alternative solutions. We also provide a thorough analysis of the design choices to help readers better understand the functions of each part of our network. The source code can be found at \url{https://github.com/RuochenFan/S4Net}.
翻译:我们考虑的是本文中一个有趣的问题-感知实例分割。我们的网络除了制作捆绑框外,还输出高质量的实例级部分。考虑到每个目标的独立的属性,我们设计了一个单一的阶段突出实例分割框架,配有一个新颖的分解分支。我们的新分支不仅关注每个探测窗口的本地背景,而且关注其周围背景,使我们能够区分同一范围的实例,即使有阻力。我们的网络可以进行端到端的训练,快速运行(处理第320x320号决议的图像时,40 fps) 。我们评估了我们使用公共基准的方法,并表明它优于其他替代解决方案。我们还对设计选择进行了透彻的分析,以帮助读者更好地了解网络每个部分的功能。源代码可以在\url{https://github.com/RuochenFan/S4Net}找到。