The impressive success of style-based GANs (StyleGANs) in high-fidelity image synthesis has motivated research to understand the semantic properties of their latent spaces. Recently, a close relationship was observed between the semantically disentangled local perturbations and the local PCA components in the learned latent space $\mathcal{W}$. However, understanding the number of disentangled perturbations remains challenging. Building upon this observation, we propose a local dimension estimation algorithm for an arbitrary intermediate layer in a pre-trained GAN model. The estimated intrinsic dimension corresponds to the number of disentangled local perturbations. In this perspective, we analyze the intermediate layers of the mapping network in StyleGANs. Our analysis clarifies the success of $\mathcal{W}$-space in StyleGAN and suggests an alternative. Moreover, the intrinsic dimension estimation opens the possibility of unsupervised evaluation of global-basis-compatibility and disentanglement for a latent space. Our proposed metric, called Distortion, measures an inconsistency of intrinsic tangent space on the learned latent space. The metric is purely geometric and does not require any additional attribute information. Nevertheless, the metric shows a high correlation with the global-basis-compatibility and supervised disentanglement score. Our findings pave the way towards an unsupervised selection of globally disentangled latent space among the intermediate latent spaces in a GAN.
翻译:以风格为基础的GANs(STyleGANs)在高纤维化图像合成中取得了令人印象深刻的成功,这促使人们开展研究,以了解其潜伏空间的语义特征。最近,我们观察到,在学习的潜在空间中,SteleGANs的语义分解的局部扰动与当地五氯苯组成部分之间,存在着密切的关系。然而,了解分解的扰动次数仍然具有挑战性。基于这一观察,我们建议对经过事先训练的GAN模型中任意的中间层进行局部层面的量测算。估计内在层面与本地扰动的扰动数量相对。从这个角度,我们分析了StelegGANs的映射网络中间层。我们的分析澄清了StyGAN中$mathcal{W}$-space的成功,并提出了一种替代方案。此外,内在层面的估算为潜伏空间的不超超超强评估提供了一种不超常性评估的可能性。我们提议的衡量标准,称为扭曲,测量,测量GlanGAN的内在空间的不相近不相容不相容。我们所学的底深层对比度空间的对比性空间的测量,要求一种不甚甚高度的测量度的测量度的测量度。