The Gaussian chain graph model simultaneously parametrizes (i) the direct effects of $p$ predictors on $q$ correlated outcomes and (ii) the residual partial covariance between pair of outcomes. We introduce a new method for fitting sparse Gaussian chain graph models with spike-and-slab LASSO (SSL) priors. We develop an Expectation-Conditional Maximization algorithm to obtain sparse estimates of the $p \times q$ matrix of direct effects and the $q \times q$ residual precision matrix. Our algorithm iteratively solves a sequence of penalized maximum likelihood problems with self-adaptive penalties that gradually filter out negligible regression coefficients and partial covariances. Because it adaptively penalizes model parameters, our method is seen to outperform fixed-penalty competitors on simulated data. We establish the posterior concentration rate for our model, buttressing our method's excellent empirical performance with strong theoretical guarantees. We use our method to reanalyze a dataset from a study of the effects of diet and residence type on the composition of the gut microbiome of elderly adults.
翻译:高斯链图模型同时出现准正反差(i) 美元预测器对美元相关结果的直接效应,(ii) 两种结果之间剩余部分共差的余下效应。我们引入了一种新的方法,将稀有高斯链图模型与钉状激光激光LASSO(SSL)前缀相匹配。我们开发了预期条件最大化算法,以获得对美元正时直接效应矩阵和美元正时余精密矩阵的稀薄估计值。我们的算法迭代解决了一组惩罚性最大可能性的问题,逐步排除了可忽略的回归系数和部分共差。由于它适应性地惩罚模型参数,我们的方法被认为超越了模拟数据中固定的固定直系竞争者。我们为模型设定了后端浓度率,以强有力的理论保证支持了我们的方法的出色经验性表现。我们用我们的方法从对饮食和居住类型对老年人直系微生物构成的影响的研究中重新分析了数据集。