We consider a class of M-estimators of the parameters of a GARCH (p,q) model. These estimators involve score functions and, for adequate choices of the score functions, are asymptotically normal under milder moment assumptions than the usual quasi maximum likelihood, which makes them more reliable in the presence of heavy tails. We also consider weighted bootstrap approximations of the distributions of these M-estimators and establish their validity. Through extensive simulations, we demonstrate the robustness of these M-estimators under heavy tails and conduct a comparative study of the performance (bias and mean squared errors) of various score functions and the accuracy (confidence interval coverage rates) of their bootstrap approximations. In addition to the GARCH (1, 1) model, our simulations also involve higher-order models such as GARCH~(2, 1) and GARCH~(1,~\!2) which so far have received relatively little attention in the literature. We also consider the case of order-misspecified models. Finally, we use our M-estimators in the analysis of two real financial time series fitted with GARCH (1, 1) or GARCH (2, 1) models.


翻译:我们认为GARCH(p,q)模型参数的测算器是一类测算器。这些测算器涉及得分函数,并且为了适当选择得分函数,在比通常的准最大可能性更温和的假设下,这些测算器在比通常的准最大可能性更温和的假设下是基本正常的,这使它们在有重尾巴的情况下更加可靠。我们还考虑到这些测算器分布的加权靴子陷阱近似值并确立其有效性。通过广泛的模拟,我们展示了这些测算器在重尾巴下的稳健性,并对各种得分函数的性能(比值和平均正方差差)以及其靴状近似率的准确性(信心间隔率)进行了比较研究。除了GARCH(1,1)模型外,我们的模拟还涉及诸如GRCH~(2,1)和GRCH~(1, ⁇ 2)等更高级的测序模型,这些模型迄今为止在文献中很少受到注意。我们还考虑了定序模型的情况。最后,我们用我们的测测算器分析两个实际财务时间序列(2,GAR1,或1)的模型。

4
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月5日
Arxiv
0+阅读 · 2022年9月2日
Arxiv
82+阅读 · 2022年7月16日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员