We present Implicit Two Hands (Im2Hands), the first neural implicit representation of two interacting hands. Unlike existing methods on two-hand reconstruction that rely on a parametric hand model and/or low-resolution meshes, Im2Hands can produce fine-grained geometry of two hands with high hand-to-hand and hand-to-image coherency. To handle the shape complexity and interaction context between two hands, Im2Hands models the occupancy volume of two hands - conditioned on an RGB image and coarse 3D keypoints - by two novel attention-based modules responsible for (1) initial occupancy estimation and (2) context-aware occupancy refinement, respectively. Im2Hands first learns per-hand neural articulated occupancy in the canonical space designed for each hand using query-image attention. It then refines the initial two-hand occupancy in the posed space to enhance the coherency between the two hand shapes using query-anchor attention. In addition, we introduce an optional keypoint refinement module to enable robust two-hand shape estimation from predicted hand keypoints in a single-image reconstruction scenario. We experimentally demonstrate the effectiveness of Im2Hands on two-hand reconstruction in comparison to related methods, where ours achieves state-of-the-art results. Our code is publicly available at https://github.com/jyunlee/Im2Hands.
翻译:我们提出了隐式两只手(Im2Hands),这是两只相互作用的手的第一个神经隐式表示方法。与现有的双手重建方法不同,这些方法依赖于参数化手模型和/或低分辨率网格,Im2Hands可以产生具有高的手到手和手到图像的连贯性的两只手的细粒度几何形状。为了处理两只手之间的形状复杂性和交互环境,Im2Hands通过两个新的基于注意力的模块对两只手的占用体积进行建模——分别用于(1)初始占用估计和(2)上下文感知占用精细化。Im2Hands首先使用查询-图像注意力,在为每只手设计的规范化空间中学习每手的神经关节占用。然后,它使用查询-锚点注意力在姿势空间中精化初始的两只手占用,以增强两只手形状之间的连贯性。此外,我们引入了一个可选的关键点精化模块,以在单图像重建情况下实现对预测手关键点的鲁棒的两只手形状估计。我们在对比相关方法的两只手重建方面实验性地证明了Im2Hands的有效性,其中我们的方法达到了最先进的结果。我们的代码公开可以在https://github.com/jyunlee/Im2Hands上获得。