项目名称: 基于多角度遥感反演森林冠层结构参数及在碳循环模型中的应用

项目编号: No.31300533

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 农业科学

项目作者: 毛学刚

作者单位: 东北林业大学

项目金额: 25万元

中文摘要: 由于目前还没有更高分辨率(小于1 km)的实用性的区域聚集度系数产品,大多数地表过程模型仅考虑聚集度系数随植被类型的变化,而没有考虑它的时空变化,因此增加了模拟结果的不确定性,制约了LAI和模型模拟精度的提高。因此发展更高分辨率(小于1 km)叶片聚集度系数的遥感反演理论与技术,对于森林碳循环研究是非常现实和迫切的要求。本研究基于多角度遥感数据和四尺度几何光学模型,利用16天合成的500m分辨率的MODIS BRDF (Bidirectional Reflectance Distribution Function)模型参数产品(MCD43A1)提取叶片聚集度系数,并利用反演的聚集度系数数据作为模型的参数来对区域尺度的碳循环进行研究,实现遥感信息与生态机理过程模型的有效融合。

中文关键词: 聚集度系数;过程模型;森林;碳循环;树种

英文摘要: Because practical regional clumping index products of higher resolution (less than 1 km)are not available at present, most of the surface process model only consider clumping index with the change of vegetation types, regardless of its time and space changes, which increase the uncertainty of the simulation results and restrict the improvement of the LAI and model simulation accuracy. Therefore the development of remote sensing inversion theory and technology on higher resolution (less than 1 km) clumping index, for the forest carbon cycle research, is very realistic and urgent. Based on multi-angle remote sensing data and 4 scale geometric optics model, using model parameters products (MCD43A1)of 16-day synthetic MODIS BRDF (Bidirectional Reflectance Distribution Function) in 500 m resolution, this study extract clumping index and take the inversion data of clumping index as the model parameters to research the carbon cycle on regional scale, thus realizing the fusion of remote sensing information and the ecological mechanism process models.

英文关键词: clumping index;process model;forest;carbon cycle;Tree species

成为VIP会员查看完整内容
0

相关内容

【CVPR2022】基于鲁棒区域特征生成的零样本目标检测
专知会员服务
10+阅读 · 2022年3月22日
图嵌入模型综述
专知会员服务
87+阅读 · 2022年1月17日
专知会员服务
39+阅读 · 2021年9月30日
专知会员服务
54+阅读 · 2021年9月18日
专知会员服务
37+阅读 · 2021年8月31日
专知会员服务
69+阅读 · 2021年3月23日
多源数据行人重识别研究综述
专知会员服务
40+阅读 · 2020年11月2日
【NeurIPS 2020】对比学习全局和局部医学图像分割特征
专知会员服务
43+阅读 · 2020年10月20日
2022最新图嵌入模型综述
机器学习与推荐算法
3+阅读 · 2022年1月18日
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
AI从底物和酶的结构中预测米氏常数,量化酶活性
如何利用深度学习优化大气污染物排放量估算?
微软研究院AI头条
0+阅读 · 2021年8月31日
基于深度学习的小目标检测方法综述
专知
2+阅读 · 2021年4月29日
最全综述 | 医学图像处理
计算机视觉life
57+阅读 · 2019年6月15日
目标跟踪算法分类
大数据技术
13+阅读 · 2018年9月17日
干货|全景视频拼接的关键技术分析
全球人工智能
13+阅读 · 2017年7月15日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
小贴士
相关主题
相关VIP内容
【CVPR2022】基于鲁棒区域特征生成的零样本目标检测
专知会员服务
10+阅读 · 2022年3月22日
图嵌入模型综述
专知会员服务
87+阅读 · 2022年1月17日
专知会员服务
39+阅读 · 2021年9月30日
专知会员服务
54+阅读 · 2021年9月18日
专知会员服务
37+阅读 · 2021年8月31日
专知会员服务
69+阅读 · 2021年3月23日
多源数据行人重识别研究综述
专知会员服务
40+阅读 · 2020年11月2日
【NeurIPS 2020】对比学习全局和局部医学图像分割特征
专知会员服务
43+阅读 · 2020年10月20日
相关资讯
2022最新图嵌入模型综述
机器学习与推荐算法
3+阅读 · 2022年1月18日
正则化方法小结
极市平台
2+阅读 · 2021年11月24日
AI从底物和酶的结构中预测米氏常数,量化酶活性
如何利用深度学习优化大气污染物排放量估算?
微软研究院AI头条
0+阅读 · 2021年8月31日
基于深度学习的小目标检测方法综述
专知
2+阅读 · 2021年4月29日
最全综述 | 医学图像处理
计算机视觉life
57+阅读 · 2019年6月15日
目标跟踪算法分类
大数据技术
13+阅读 · 2018年9月17日
干货|全景视频拼接的关键技术分析
全球人工智能
13+阅读 · 2017年7月15日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员