Social media users articulate their opinions on a broad spectrum of subjects and share their experiences through posts comprising multiple modes of expression, leading to a notable surge in such multimodal content on social media platforms. Nonetheless, accurately forecasting the popularity of these posts presents a considerable challenge. Prevailing methodologies primarily center on the content itself, thereby overlooking the wealth of information encapsulated within alternative modalities such as visual demographics, sentiments conveyed through hashtags and adequately modeling the intricate relationships among hashtags, texts, and accompanying images. This oversight limits the ability to capture emotional connection and audience relevance, significantly influencing post popularity. To address these limitations, we propose a seNtiment and hAshtag-aware attentive deep neuRal netwoRk for multimodAl posT pOpularity pRediction, herein referred to as NARRATOR that extracts visual demographics from faces appearing in images and discerns sentiment from hashtag usage, providing a more comprehensive understanding of the factors influencing post popularity Moreover, we introduce a hashtag-guided attention mechanism that leverages hashtags as navigational cues, guiding the models focus toward the most pertinent features of textual and visual modalities, thus aligning with target audience interests and broader social media context. Experimental results demonstrate that NARRATOR outperforms existing methods by a significant margin on two real-world datasets. Furthermore, ablation studies underscore the efficacy of integrating visual demographics, sentiment analysis of hashtags, and hashtag-guided attention mechanisms in enhancing the performance of post popularity prediction, thereby facilitating increased audience relevance, emotional engagement, and aesthetic appeal.
翻译:暂无翻译