Data augmentation is commonly applied to improve performance of deep learning by enforcing the knowledge that certain transformations on the input preserve the output. Currently, the data augmentation parameters are chosen by human effort and costly cross-validation, which makes it cumbersome to apply to new datasets. We develop a convenient gradient-based method for selecting the data augmentation without validation data during training of a deep neural network. Our approach relies on phrasing data augmentation as an invariance in the prior distribution on the functions of a neural network, which allows us to learn it using Bayesian model selection. This has been shown to work in Gaussian processes, but not yet for deep neural networks. We propose a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective, which can be optimised without human supervision or validation data. We show that our method can successfully recover invariances present in the data, and that this improves generalisation and data efficiency on image datasets.
翻译:数据增强通常用于通过执行输入中的某些转换保存输出的知识来提高深层次学习的绩效。 目前,数据增强参数是通过人类的努力和昂贵的交叉校验选择的,因此难以适用于新的数据集。 我们开发了一种方便的梯度法,用于在不经过深层神经网络培训时不经验证数据的情况下选择数据增强。 我们的方法依赖于将数据增强作为神经网络功能先前分布的一种变异,这使我们能够使用Bayesian模型选择来学习它。 这在Gausian过程中已经证明是有效的,但对于深线神经网络来说却不是如此。 我们建议了一种与我们的目标相比的边际可能性可不同、可选择的Kecker-factored Laplace的近似值,在没有人类监督或验证数据的情况下可以加以优化。 我们证明,我们的方法可以成功地恢复数据中存在的变异性,这可以提高图像数据集的概括性和数据效率。